Solving Systems of Polynomial

نویسنده

  • Dinesh Manocha
چکیده

Current geometric and solid modeling systems use semi-algebraic sets for deening the boundaries of solid objects, curves and surfaces, geometric constraints with mating relationship in a mechanical assembly, physical contacts between objects, collision detection. It turns out that performing many of the geometric operations on the solid boundaries or interacting with geometric constraints is reduced to nding common solutions of the polynomial equations. Current algorithms in the literature based on symbolic, numeric and geometric methods suuer from robustness, accuracy or eeciency problems or are limited to a class of problems only. In this paper we present algorithms based on multipolynomial resultants and matrix computations for solving polynomial systems. These algorithms are based on the linear algebra formulation of resultants of equations and in many cases there is an elegant relationship between the matrix structures and the geometric formulation. The resulting algorithm involves singular value decompositions, eigendecompositions, Gauss elimination etc. In the context of oating point computation their numerical accuracy is well understood. We also present techniques to make use of the structure of the matrices to improve the performance of the resulting algorithm and highlight the performance of the algorithms on diierent examples.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Resolution of Fuzzy Complex Systems of Linear Equations Via Wu's Method

The aim of this paper is to present algebraic method which is called Wu's method to solving fuzzy complex systems of linear equations. Wu's method is used as a solution procedure for solving the crisp polynomial equations system. This algorithm leads to solving characteristic sets that are amenable to easy solution. To illustrate the easy application of the proposed method, numerical examples a...

متن کامل

Global optimization of mixed-integer polynomial programming problems: A new method based on Grobner Bases theory

Mixed-integer polynomial programming (MIPP) problems are one class of mixed-integer nonlinear programming (MINLP) problems where objective function and constraints are restricted to the polynomial functions. Although the MINLP problem is NP-hard, in special cases such as MIPP problems, an efficient algorithm can be extended to solve it. In this research, we propose an algorit...

متن کامل

Non-polynomial Spline Method for Solving Coupled Burgers Equations

In this paper, non-polynomial spline method for solving Coupled Burgers Equations are presented. We take a new spline function. The stability analysis using Von-Neumann technique shows the scheme is unconditionally stable. To test accuracy the error norms 2L, L are computed and give two examples to illustrate the sufficiency of the method for solving such nonlinear partial differential equation...

متن کامل

Adomian Polynomial and Elzaki Transform Method of Solving Fifth Order Korteweg-De Vries Equation

Elzaki transform and Adomian polynomial is used to obtain the exact solutions of nonlinear fifth order Korteweg-de Vries (KdV) equations. In order to investigate the effectiveness of the method, three fifth order KdV equations were considered. Adomian polynomial is introduced as an essential tool to linearize all the nonlinear terms in any given equation because Elzaki transform cannot handle n...

متن کامل

Expansion methods for solving integral equations with multiple time lags using Bernstein polynomial of the second kind

In this paper, the Bernstein polynomials are used to approximate the solutions of linear integral equations with multiple time lags (IEMTL) through expansion methods (collocation method, partition method, Galerkin method). The method is discussed in detail and illustrated by solving some numerical examples. Comparison between the exact and approximated results obtained from these methods is car...

متن کامل

Approximate Solution of Linear Volterra-Fredholm Integral Equations and Systems of Volterra-Fredholm Integral Equations Using Taylor Expansion Method

In this study, a new application of Taylor expansion is considered to estimate the solution of Volterra-Fredholm integral equations (VFIEs) and systems of Volterra-Fredholm integral equations (SVFIEs). Our proposed method is based upon utilizing the nth-order Taylor polynomial of unknown function at an arbitrary point and employing integration method to convert VFIEs into a system of linear equ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 1994